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I. INTRODUCTION

Double ionization of the helium atom by two XUV
photons in the range of 40 to 50 eV has become the sub-
ject of intense theoretical interest in recent years [1–13]
as well as the target of new experiments with high har-
monic generation sources [14] and the first of a series of
experiments underway at the free-electron laser source
(FLASH) in Hamburg [15, 16]. The advent of new high
intensity free-electron laser [17] and high-harmonic gen-
eration [18] light sources that operate in the VUV and
soft X-ray regimes are on the verge of enabling kinemat-
ically complete experiments on this fundamental system.

To date, kinematically complete experiments (experi-
ments in which the angular distributions and energies of
both ejected electrons are detected) have been performed
only for double ionization by a single XUV photon of
simple atoms [19] and molecules [20]. However, these
experiments, coupled with accurate ab initio theoretical
calculations, have already yielded new understanding of
electron correlation and its role in the double ionization
process.

In the case of two-photon double ionization such exper-
iments have yet to appear, but it is clear that they are
on the horizon. These experiments will probe the role
of electron correlation in both nonsequential ionization,
where it is expected to play a central role, and sequential
ionization, in which it is expected to be less important. It
is in the completely differential quantity, the triple differ-
ential cross section (TDCS), that the electron correlation
effects are most clearly revealed, and we will therefore fo-
cus much of our attention on those cross sections here.

Recently we reported total cross sections [21] for this
process up to photon energies of 54.4 eV, the threshold
of sequential double ionization and also reported single
differential cross sections for energies up to 58 eV. In that
work we predicted an effect that we can call “virtual se-
quential ionization” in which an indication of the onset
of the sequential ionization process is seen in both the to-
tal cross section and the single differential cross section

(SDCS or ”energy-sharing cross section”) well below the
energetic threshold for that process. In the SDCS above
threshold there are broad peaks centered at photoelec-
tron energies corresponding to sequential ionization, and
the wings of those peaks appear even at photon energies
below that threshold (54.4 eV).

We have also reported the nuclear recoil cross sec-
tions [22], which derives from the TDCS, at energies
above and below the sequential threshold, because this
quantity is easier to measure than the TDCS, and in the
absence of kinematically complete experiments it is likely
to be the first differential quantity associated with two-
photon double ionization to be well resolved. In fact, an
encouraging recent measurement has been made at the
FLASH facility, albeit not yet with high resolution [16].

The TDCS for two-photon double ionization is intrinsi-
cally different from that for one-photon double ionization.
In the one-photon case, the ejection of two electrons is
a process that occurs primarily because of the correlated
motion of the two electrons. In the two-photon case,
even below the sequential threshold, one can postulate
a contribution to double photoionization in which each
electron effectively absorbs the energy of one photon and
the two electrons also interact with each other to pro-
duce the double ionization event. Electron correlation,
while still essential to the process, is somewhat less im-
portant and is reflected in different ways in the angular
distributions of the ejected electrons.

In this work we will explore both the general features
and the details of those angular distributions in con-
verged calculations using the method of exterior com-
plex scaling (ECS) in a time-independent approach to the
problem. We find that below the sequential threshold the
TDCS has a shape that can be understood qualitatively
as a modification by electron correlation of the angular
distribution that would have been expected for sequential
ejection of the electrons. When one electron is ejected
nearly perpendicular to the polarization direction that
modification of the simple pattern is extreme, and the
effects of electron correlation create a more complicated
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ejection pattern for the other than in the cases where
one electron goes out close to the direction of polariza-
tion. The complete story of how electron correlation is
reflected in these cross sections is only seen when these
effects are examined as a function of the energy sharing
between the two outgoing electrons.

We will begin here by summarizing the theoretical ap-
proach and its numerical implementation in Section II,
where we will also discuss the convergence of the TDCS.
In Section III we will present results for the total cross
section in comparison with the results of other methods
and explore the SDCS for a range of energies just above
and below the sequential threshold. We will then turn to
a survey of the TDCS and its interpretation. Finally, we
present nuclear recoil cross sections for cuts of the mo-
mentum plane and for particular energy sharings, that
are more detailed than the completely integrated nuclear
recoil cross sections presented previously [22]. A sum-
mary and some concluding remarks are given in Section
IV.

II. THEORY

A. Exterior Complex Scaling formulation of two

photon absorption

We begin with the definition of the cross section for
two-photon double ionization of an atom in terms of the
ionization amplitude, f(k1,k2, ω),

dσ

dE1dΩ1dΩ2
=

2π

~

(2πα)2

m2ω2
k1k2|f(k1,k2, ω)|2 , (1)

where k1 and k2 are the momenta of the photoelectrons,
ω is the photon frequency, m is the electron mass and α
is the fine-structure constant. The amplitude in Eq.(1)
is the velocity form of the double photoionization ampli-
tude,

f(k1,k2, ω) = 〈Ψ−

k1,k2
|µ[E0 + ~ω−H + iǫ]−1µ|Φ0〉 , (2)

whereH is the atomic Hamiltonian, Φ0 is the initial state
of the atom with corresponding energy E0, and Ψ−

k1,k2
is

the full momentum-normalized scattering wave function,
with incoming boundary conditions corresponding to two
free electrons. For polarization ǫ, the dipole operator in
the velocity form, µ, is defined in terms of the momentum
operators, pi, for the two electrons by µ = ǫ ·p1 + ǫ ·p2.

To formulate this problem using the ECS approach, we
begin with the coupled driven equations in the Dalgarno-
Lewis form of second order perturbation theory [23] that
describe the absorption of two photons by a system ini-
tially in state Φ0,

(E0 + ~ω −H)Ψsc
1 (r1, r2) = µΦ0 (3)

(E0 + 2~ω −H)Ψsc
2 (r1, r2) = µΨsc

1 , (4)

which must be solved with pure outgoing wave boundary
conditions for the wave functions Ψsc

1 and Ψsc
2 . The two-

photon double ionization amplitude is formally contained
(to within an overall phase) in the asymptotic form of the
solution of the second equation.

It is common in time-dependent calculations to extract
double ionization cross sections by projecting a wave
packet onto an approximation to the two-electron final
continuum state, thereby defining an apparent rate for
double ionization, as explained for example in refs. [3]
and [24]. However, for time-independent descriptions of
Coulomb breakup processes there is a long literature, go-
ing back to the foundational papers of Rudge, Seaton
and Peterkop[25–27], deriving integral expressions for the
ionization amplitude directly, without approximating the
final state. In this approach one begins with the asymp-
totic form of the wave function, in our case Ψsc

2 , in the
Coulomb three-body breakup channel,

Ψsc
2 −→

ρ→∞

√
2πi

(

K3

ρ5

)1/2

eiKρ+ζ ln 2Kρ+iσ0f(k1,k2, ω)

(5)

where ρ =
√

r21 + r22 , which defines the amplitude for
double ionization, f(k1,k2, ω). Applying the original
ideas of Rudge [25] to a wave function known exactly in
a large but finite volume, we have previously shown [28]
that the double ionization amplitude can be extracted
(to within an irrelevant volume-dependent overall phase)
using a surface integral that involves a pair of testing
functions, ψ−

k
(r), which are momentum-normalized, one-

electron Coulomb functions with nuclear charge Z=2, in
the case of helium:

f(k1,k2, ω) =
1

2

∫

(

ψ−∗

k1
(r1)ψ−∗

k2
(r2)∇Ψsc

2 (r1, r2)

−Ψsc
2 (r1, r2)∇ψ−∗

k1
(r1)ψ−∗

k2
(r2)

)

· dS
(6)

It is important to note that, as discussed in detail previ-
ously [29–31], the functions ψ−

k1
(r1) and ψ−

k2
(r2) do not

describe the final state of the system, but are merely the
testing functions that extract the double ionization am-
plitude from from the asymptotic behavior of Ψsc

2 via the
surface integral in Eq.(6). No approximation concern-
ing the final state has been made in this formalism, and
electron correlation is treated completely in the final out-
going wavefunction Ψsc

2 as well as in the initial state Φ0

in this approach.
Now we proceed to solve Eqs. (3) and (4) using the ECS

approach to impose the correct boundary conditions. In
the ECS method we first scale the radial coordinates of
both electrons by a complex phase factor outside a fixed
radius, R0,

r →
{

r r ≤ R0

R0 + (r −R0)e
iη r > R0

(7)

where R0 defines the radius within which the wave func-
tion will be the usual function of real-valued coordinates,
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and η is a scaling angle. In an exact or converged calcula-
tion the solutions of the Schrödinger equation for r < R0

do not depend on η or R0. As has been discussed else-
where [28, 29, 32, 33] setting η 6= 0 effectively imposes
outgoing scattering boundary conditions on both wave
functions in Eqs. (3) and (4) if on the complex contour

we require only that Ψ → 0 as r → ∞.
However, in those applications of the ECS method the

right hand side of the relevant driven Schrödinger equa-
tion was square integrable, and the application of the
correct boundary condition by the ECS transformation
was therefore independent of the choice of R0 as long
as it was chosen to lie beyond the range of the driving
function. In this application we have to address another
problem. For photon energies exceeding the first ioniza-
tion potential of the atom, the solution of Eq. (3) Ψsc

1 ,
will have single ionization terms that behave, at large real

values of the electron coordinates, as the (symmetrized)
product of a bound state of He+ times an undamped out-
going wave in the other electron coordinate. This fact
means that µΨsc

1 , which is the driving term for Eq. (4),
will not vanish as r1 or r2 → ∞ along the real axis.

Because the dipole operator µ is a one-body opera-
tor, the application of outgoing boundary conditions via
the ECS transformation in Eq. (4) will depend on the
value of R0, irrespective of the gauge being used, and the
ionization amplitudes extracted from Ψsc

2 will not con-
verge with increasing volume of the space on which it
is solved. We can circumvent this problem by adding a
small, positive imaginary part to ω in Eq. (3) only, which
will produce a solution Ψsc

1 with an exponential fall-off
for real r-values. With this procedure, we have a valid
driving term for the solution of Eq. (4), which can then
be solved directly under ECS for real ω. As we will see,
this procedure yields convergent amplitudes that must
then be numerically extrapolated to purely real photon
energies. That extrapolation will be discussed in the fol-
lowing section on the numerical implementation of ECS
for this problem.

B. Numerical implementation

In these calculations we have used the numerical pro-
cedures and the representation of the wave functions pre-
viously utilized for both the H− anion [34] and molecu-
lar hydrogen [35] and decompose the full scattered wave
into angular components on a radial grid in order to im-
plement exterior complex scaling. Thus, we expand the
scattered wave functions that solve Eqs. (3) and (4) in
partial waves of the form

Ψsc =
∑

l1m1

∑

l2m2

1

r1r2
ψl1m1,l2m2

(r1, r2)Yl1m1
(r̂1)Yl2m2

(r̂2),

(8)
For both Ψsc

1 and Ψsc
2 . This sum, in the case of

Ψsc
1 is over lm-pair configurations that give an overall

L = 1,M = 0 state required by photoabsorbtion se-

lection rules, while for Ψsc
2 the lm-pairs are those that

contribute to L = 0,M = 0 and L = 2,M = 0.
The radial function ψl1m1,l2m2

(r1, r2) multiplying the
product of spherical harmonics is taken to be a two-
dimensional finite element-discrete variable representa-
tion (FEM-DVR) function, as in references [35] and [34].
The FEM-DVR radial basis is an attractive choice be-
cause of the computational efficiency gained as well as its
natural complementarity for implementing exterior com-
plex scaling [36].

In these calculations we used values of l1 and l2 up
to 9, giving 228 (l1,m1, l2,m2) configurations. The ECS
contour for each radial distance spanned along the real
axis from the origin to R0 = 160 a0, and extend in the
complex plane to Rmax = 230 a0. The numerical grid was
constructed from 17 finite elements along the real portion
of the ECS contour and an additional 4 elements on the
complex part, with each element using 18th order DVR.
This leads to an overall linear system size of n ∼ 2.9×107.

The expansion of Ψsc
2 in Eq. (8) leads naturally to a

definition of partial wave amplitudes Fl1,l2,m1,m2
(k1, k2)

for ionization in terms of which the overall double ion-
ization amplitude can be written [34]

f(k1,k2, ω) =
∑

l1,m1

∑

l2,m2

(

2

π

)

i−(l1+l2)eiηl1
(k1)+iηl2

(k2)

×
[

Fl1,l2,m1,m2
(k1, k2)Yl1m1

(k̂1)Yl2m2
(k̂2)

]

,

(9)

where ηl(k) is a Coulomb phase shift. It is the partial
wave amplitudes that we extrapolate from complex val-
ues of ω to Im[ω] = 0. in order to complete our cal-
culation of the physical amplitudes and cross sections
reported in the following discussion.

For each energy sharing, (k1, k2), we wish to consider,
we evaluate F

γ
l1,l2,m1,m2

(k1, k2) using Ψsc
2 computed with

Im[ω] = γ for each configuration (l1, l2,m1,m2). The
amplitude evaluation is done for a number of values of
γ in the range [γmin − γmax]. In the current calculation
γmax = 0.500 and γmin in the range [0.050 − 0.150] de-
pending on the photon energy. Calculations with smaller
values of γ become impractical since they require sub-
stantially larger grids for convergence. Each amplitude
was then fit to a cubic polynomial in γ and the value of
the polynomial at γ = 0 was the used as the value of
Fl1,l2,m1,m2

(k1, k2).
The converged real and imaginary parts of all the par-

tial wave amplitudes were found to be smooth functions
of Im[ω] = γ and, with exceptions to be noted below,
vary slowly as γ approaches zero. For small values of γ,
depending on the photon energy and the energy shar-
ing, the results depend on the size of the FEM-DVR
grid, since the larger grids imply denser sets of discrete
energy eigenvalues of the discretized Hamiltonian. For
every photon energy considered the amplitudes were ex-
amined to identify the minimum value of γ to which a
smooth cubic polynomial fit of the amplitude could be
extended.
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FIG. 1: Extrapolation to Im[ω] = 0 of real and imaginary parts of the ionization amplitude of Eq. (9), in atomic units. Left:
F0,0,0,0(k1, k2) with 40% energy sharing for a photon energy of 58 eV. Right: F1,0,1,0(k1, k2) with 10% energy sharing. The
open circles and squares mark calculated values that were not included in the cubic polynomial fits shown by the solid and
dashed lines.

FIG. 2: Color online. Left convergence of TDCS at 46 eV and equal energy sharing for ejection of one electron at 90◦ to the
polarization direction with respect to the order of the DVR basis in each finite element. Right: Convergence with respect to
the maximum angular momentum included.

We have observed that the errors associated with ex-
trapolating the amplitudes to real ω increase as we ap-
proach the threshold for sequential ionization. Examples
of the extrapolation procedure are shown in Fig. 1 for
a photon energy of 58 eV, which is above the sequen-
tial ionization threshold. For 40% energy sharing, where
nonsequential ionization dominates, the amplitudes for
both electrons ejected as s-waves are well fit by a cu-
bic polynomial. This is not the case for simultaneous
p-wave ejection at 10% energy sharing, where sequential
ionization dominates, as seen by the behavior plotted in
the right panel of Fig. 1. There is evidently substan-
tial curvature in the amplitudes at small values of Im[ω]
which is difficult to capture with calculations that stop

at Im[ω] = 0.05. This behavior is not surprising since,
as we have previously pointed out [21] (see Appendix A),
the two-photon double ionization amplitude is formally
divergent above 54.4 eV at the energy sharings corre-
sponding to sequential ionization. As the threshold for
sequential ejection is approached from below, the ampli-
tudes that dominate the cross section above that thresh-
old begin to increase rapidly at extreme unequal energy
sharings. That is the origin of the effect we have called
“virtual sequential ionization” [21, 22]. In these regions
our extrapolation procedure has the most error. There-
fore, when we discuss the total cross section below we will
attempt to estimate that error. However it appears that
the resulting TDCS behavior remains qualitatively cor-
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FIG. 3: (Color online) Total two-photon double ionization
cross section.

rect although there is some error in absolute magnitude.
Near equal energy sharing that effect is minimized.

The calculations here involve a different extrapolation
from those in ref. [21] where the cross sections, and not
the individual partial wave amplitudes, were extrapo-
lated from complex values of ω. The nuclear recoil cross
sections presented very recently in ref. [22], on the other
hand, did involve the extrapolation of the amplitudes
since they depend on the TDCS. We emphasize that in
the calculations we present here, convergence has been
reached with respect to the number of angular momen-
tum pairs (l1, l2,m1,m2) and the radial grids. That fact
is demonstrated in Fig. 2 which shows the convergence
of the TDCS for a case where its magnitude is smallest,
namely when one electron is ejected perpendicular to the
polarization direction. Thus we see that essentially all of
the residual error originates in the extrapolation of Im[ω].

III. CROSS SECTIONS FOR TWO-PHOTON

DOUBLE IONIZATION OF HELIUM

A. Integral cross section

In Fig. 3 we show the results of the present calcula-
tions for the total cross section computed from the ex-
trapolated partial wave amplitudes together with a rep-
resentative sampling of other calculations of this quan-
tity. Several of the calculations shown in this figure are
described by their authors as either explicitly or implic-
itly including correlation in the initial and final states
and be able in principle to converge to an essentially
exact result. Those include the Time-dependent Close
Coupling (TDCC) results of Hu, Colgan and Collins [5],
the TDCC results of Feist et al. [24], and the numer-
ical time-dependent Schrödinger equation (TDSE) cal-
culations of Piraux et al. [7] in all of these cases the
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FIG. 4: a) SDCS for photon energies of 42, 45, 50, and 52
eV (solid, short dash, long dash, and dash-dot curves respec-
tively). b) SDCS for photon energies of 55, 56, 57, and 58
eV (solid, short dash, long dash, and dash-dot curves respec-
tively).

ionizing wave packets are solutions of the TDSE, even
though the amplitudes may be extracted by projection
onto uncorrelated products of Coulomb continuum func-
tions for each electron. The correlated treatments also
include R-matrix Floquet calculations of Feng and van
der Hart [6], and the second order quasi-energy approach
of Shakeshaft [11] which both evaluate the total ioniza-
tion cross section by other means. Below 50 eV agree-
ment of the present results with all of those calculations
is generally within a factor of 1.5 except very near thresh-
old. We conclude that the differences are primarily due
to various degrees of numerical error in the description of
the wave functions. The present results are also in simi-
lar agreement with the convergent close-coupling (CCC)
calculation of Ivanov and Kheifets [37] , which employed
an additional closure approximation.

The rise in the total cross section as the sequential
threshold is approached, seen in our earlier study [21]
and subsequently verified by other investigators [11, 24],



6

is part of the effect we have called virtual sequential ion-
ization. Above that threshold, the total cross section is
formally infinite in lowest order perturbation theory. Be-
tween 50 eV and 54.4 eV, we note that the simple cubic
polynomial fit to the partial wave amplitudes as functions
of Im[ω] represents their behavior less well than at lower
photon energies. In that region we have assigned error
bars to our results based on varying γmin in the range of
extrapolation values, Im[ω] = [γmin − γmax] between 0.05
and 0.1 hartrees.

We find that for photon energies above 50 eV, while the
magnitudes of the cross sections have some uncertainty
due to the extrapolation procedure, the shapes of the an-
gular distributions (the TDCS) do not vary significantly
with the extrapolation parameters. Thus we conclude
that the remaining disagreement in the total cross sec-
tion and magnitudes of the other differential quantities
that we calculate for those photon energies is due in part
to a variation in the analytic behavior of the amplitudes
for small values of Im[ω] that we do not capture correctly
with this extrapolation procedure. However, the quali-
tative behaviors of the TDCS in that energy region and
above the sequential threshold remains correct. Below 48
eV, our results seem to have converged unambiguously in
all respects.

B. Single Differential Cross Sections

The calculated SDCS, defined as the integral of the
TDCS over all directions of electron ejection,

dσSDCS

dE1
=

∫

dΩ1

∫

dΩ2
dσ

dE1dΩ1dΩ2
(10)

is shown for several energies below and above the sequen-
tial threshold in Fig. 4. At photon energies of 42 and
45 eV it is nearly flat as a function of energy sharing,
E1/E, where E is the photon energy minus the double
ionization potential. Those cross sections above the se-
quential threshold show peaks at the energies for sequen-
tial ejection whose heights are formally infinite in this
time-independent calculation of the lowest order pertur-
bation theory description of photoejection. They have
finite heights in these calculations as a result of the error
inherent in the extrapolation procedure, which in turn
has its origins in the finite size of the numerical grids we
employ.

The signature of the virtual sequential ionization effect
is seen in at 50 and 52 eV in Fig. 4 where the SDCS turns
up near extreme energy sharing fractions. We have dis-
cussed previously how this behavior is essentially the ap-
pearance of the edges of the sequential peaks that appear
above the sequential threshold [21, 22]. More specifically
it can be attributed to the increasing contribution of the
amplitudes for ejection of both electrons as p-waves.

FIG. 5: TDCS for a photon energy of 42 eV with equal energy
sharing. a) fixed electron at 0◦, b) fixed electron at 30◦. c)
fixed electron at 60◦ and d) fixed electron at 90◦. Solid curve:
current result, dashed curve: TDCC calculations of ref. [5],
dotted curve: TDCC calculations of ref.[24].

C. Triple Differential Cross Sections

The computed TDCS for a photon energy of 42eV
and equal energy sharing is compared with the results
of two previous time-dependent close-coupling calcula-
tions in Fig. 5. It is apparent from that comparison that
some disagreement in magnitude remains between these
completely ab initio calculations that is not resolved by
scaling any of them by an overall constant, but that the
shapes are generally in agreement. For equal energy shar-
ing, the TDCS should be zero when both electrons exit
in the same direction. This zero is a consequence of
Coulomb repulsion, not a selection rule, and appears only
in a completely converged calculation. These zeroes are
reproduced to graphical accuracy in our ECS calculations
and those of ref. [24] as well, while the TDCC calculations
of ref. [5] give small but visible values in those directions.

Here we focus on an overview of the behavior of the
TDCS and the way in which it reveals the presence of
electron correlation and manifests virtual sequential ion-
ization effects. To understand the qualitative behavior of
the TDCS for two-photon ionization at any energy, and
how it manifests effects that are due to electron corre-
lation, it is essential to understand it first for sequential
ionization where the effects of correlation are nearly neg-
ligible.

In Appendix A we sketch the derivation of the approxi-
mation to the amplitude for two-photon double ionization
that we introduced in ref. [21], under a set of simplify-
ing approximations that completely neglect both electron
correlation and screening. It gives the following approx-
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imation to the TDCS:

dσseq

dE1dΩ1dΩ2
≈ ~

4π

(

3

4π

)2

cos2(θ1) cos2(θ2)

(

√

σHe+(E2)σHe(E1)

E0 + ~ω − ǫ1s − E1
+

√

σHe+(E1)σHe(E2)

E0 + ~ω − ǫ1s − E2

)2

.

(11)

In Eq.(11) σHe(E) is the integral single ionization cross

section of the neutral helium atom, and σHe+(E) is the
exact integral single photoionization cross section of He+.
The key point here is that the angular dependence has the
form of the product of two completely uncorrelated dipole
distributions for the two electrons. We emphasize that
Eq.(11) is a model for sequential ionization only in the
sense that it is the simplest approximation to the second-
order amplitude that captures its singularities at the ejec-
tion energies of the sequential process. More sophisti-
cated treatments convert these singularities to peaks of
finite height located at the same energies [38, 39].

If we integrate Eq.(11) over dΩ1 and dΩ2 we get the
approximation to the SDCS used in reference [21] to qual-
itatively describe the origin of the sequential peaks:

dσseq

dE1
≈ ~

4π

(

√

σHe+(E2)σHe(E1)

E0 + ~ω − ǫ1s − E1

+

√

σHe+(E1)σHe(E2)

E0 + ~ω − ǫ1s − E2

)2

.

(12)

With the understanding that the TDCS would be pro-
portional to cos2(θ1) cos2(θ2) for purely sequential ioniza-
tion, we can turn our attention to Fig. 6, which shows
the TDCS at two photon energies, plotted in three di-
mensions, for four directions of the fixed electron. At 58
eV for an energy sharing of 90%, which is close to the
sequential peak of the SDCS, we see a dipole-like pat-
tern apparently distorted by the interaction of the two
outgoing electrons. The most dramatic effect is the al-
most complete extinction of the cross section when either
electron is ejected at 90◦, just as the cos2(θ1) cos2(θ2) de-
pendence of sequential ionization would suggest. In the
same figure we see a similar plot for 46 eV photons and
50% energy sharing, in the purely nonsequential region,
well away from the sequential threshold. It also is nearly
extinguished when either electron is ejected perpendicu-
lar to the polarization direction, but at other angles of
the fixed electron it is more strongly distorted from a
simple dipole pattern.

We have found that at all energies below the sequential
threshold and at all but very extreme energy sharing, the
TDCS has the general behavior shown in the lower row
of Fig. 6, suggesting a qualitative picture in which each
electron is separately accelerated by the applied field.
The TDCS is very small when either electron is ejected

at angles nearly perpendicular to the polarization vec-
tor, a behavior very different from that of the TDCS for
one-photon double ionization. For geometries that in-
volve ejection perpendicular to the polarization vector,
the TDCS is most difficult to converge in terms of the
included angular momenta, underscoring the fact that it
is in those geometries that the effects of electron corre-
lation are most pronounced. Although the cross sections
are very small in these geometries, as is seen for example
in the rightmost case on the bottom row of Fig. 6, the
ejection of an electron perpendicular to the polarization
direction produces a more complicated angular pattern
in the TDCS than at other geometries that is a signature
of the electron correlation necessary for this process to
take place.

Figure 7 demonstrates that in spite of the overall sim-
ilarity of the shapes of the TDCS at different photon en-
ergies, it nevertheless shows the effect we call virtual se-
quential ionization below the sequential threshold. That
figure shows the TDCS plotted as contour plots with re-
spect to energy sharing and the ejection angle of one
electron. As the energy is increased from 42 to 46 and to
52 eV we see the dominance of extreme energy sharings
increase. The TDCS varies in magnitude with energy
sharing showing a signature of the virtual sequential con-
tribution, but its behavior with respect to angles varies
more subtly with energy sharing as the sequential thresh-
old is approached from below. At 56 eV, in the bottom
row of that figure, the sequential peaks and the approxi-
mate cos2(θ1) cos2(θ2) behavior is apparent.

D. Nuclear recoil cross sections

The momentum recoil, Q, of the nucleus due to the
ejection of two electrons of momenta k1 and k2 is

Q = −(k1 + k2) . (13)

The definition of the nuclear recoil cross section is thus
given by the following integral of the SDCS.

dσ

d3QdE1
=

∫

dΩ1

∫

dΩ2
dσ

dΩ1dΩ2dE1
δ3(Q + k1 + k2) .

(14)
The delta function picks out k1 and k2 that are solutions
to the set of equations,

Q = −(k1 + k2)

|k1| = k1

|k2| = k2 .

(15)

However, the numerical implementation of integral in
Eq.(14) requires some effort because, for example, there
are ranges in directions of k1, for which no k2 exists that
satisfies Eq.(15). In Appendix B we give a simple al-
gorithm with which to calculate dσ/d3QdE1, given the
TDCS.
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FIG. 6: Color online. Top: TDCS at 58 eV and 90% energy sharing for angles of the fixed electron (single headed arrow) of
0◦, 30◦, 60◦ and 90◦ from the polarization direction (double headed arrow). Bottom: same at 46 eV and 50% energy sharing.
Inset in last column shows the cross section magnified 100 (top) and 40 (bottom) times.

The nuclear recoil can be measured directly in double
ionization experiments using the COLTRIMS method,
for example. Such observations do not require detection
of the electrons at all, and thus avoid completely the need
for coincidence measurements [16]. Nonetheless, this in-
tegrated quantity can show clear signatures of the se-
quential and nonsequential processes in two-photon dou-
ble ionization as we have discussed previously [22]. Such
a measurement integrates the differential nuclear recoil
cross section in Eq.(14) over energy sharing, and some-
times over one component of the recoil momentum, Q.
It is interesting to see the how the nuclear recoil behaves
in more detail, as a function of energy sharing, for exam-
ple, although the measurement of the fully differential
quantity requires a coincidence measurement.

In Fig. 8 we show a cut of the momentum recoil plane
with Qy = 0 for energy sharings of 10% and 45% for one
photon energy above and and another below the sequen-
tial ionization threshold. The far right hand panels of
that figure shows the prediction of the simple model in
Eq.(11). At 58 eV, comparison with the full ECS calcu-
lations in the same figure shows that the simple model,
which completely neglects any correlation between the
electrons as well as electrostatic shielding, agrees almost
perfectly in its qualitative behavior with the full calcula-
tions. That comparison suggests that the effects of elec-
tron correlation, even at near equal energy sharing, are

almost obscured in the nuclear recoil cross section by the
dominance of the sequential process at photon energies
where it can take place.

On the other hand at a photon energy of 42 eV, far
below the sequential threshold, the nuclear recoil cross
section does in fact reflect some of the behavior of the
underlying TDCS when it is plotted for specific energy
sharings, as is shown in the leftmost panels of Fig. 8.
The integration over the ranges of angles described in
Appendix B does however obscure much of that detail,
so that at these energies where only the nonsequential
process is possible the features that remain in the nu-
clear recoil cross section largely reflect the combination
of the energy sharing probabilities and the conservation
of momentum. These conclusions also apply to the cross
sections integrated over Qy that are shown in Fig. 9. Al-
though the shapes of the recoil patterns change somewhat
the main features remain similar.

We can conclude that while observing the nuclear re-
coil cross section, even integrated over energy sharings,
reveals some of the kinematics of the double ionization
process, only a kinematically complete experiment, mea-
suring the momenta of either both electrons or one elec-
tron and the nucleus, carries the detail of the TDCS nec-
essary to reveal the effects of electron dynamics and the
details of double photoejection dynamics.
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FIG. 7: Color online. Contour plot of triple differential cross section for various energy sharings for photon energies of (top to
bottom) 42, 46, 52 and 56 eV. The angle, θ1 of the fixed electron is (left to right) 0◦, 60◦ and 150◦.
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FIG. 8: Color online. Nuclear recoil cross sections in with Qy = 0 (with Qz in the direction of polarization) for (columns, left
to right) 42 eV, 58 eV and the sequential model at 58 eV. Q in atomic units. Top row is 10% and and bottom row is 45%
energy sharing.
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FIG. 9: Color online. Same as Fig. 8, integrated over Qy

IV. CONCLUSION

In this study we have presented a complete description
of the two-photon double photoionization of helium from
a time-independent implementation of the lowest order
perturbation theory equations for the process. The com-
bination of ECS and the grid methods we have used in
other contexts can solve those equations accurately, con-
verging the solution with respect to partial waves and
the spatial basis of DVR functions. Because the driving
term of the second of those equations does not limit to
zero as the coordinates of either electron go to infinity
it was necessary to employ extrapolation from complex
values of the photon frequency in its solution. This com-
putational device has not been necessary in any previous
application of the ECS method to multiple photoioniza-
tion or electron-impact ionization.

A complete picture of the dynamics of two-photon dou-
ble ionization has emerged from these calculations. In
the SDCS the effects of “virtual sequential ionization,”
which are the wings of the peaks that appear above the
sequential threshold, are clearly visible above a photon
energy of 50 eV. The rise in the total cross section as the
sequential threshold is approached is due to this effect.

A global overview of the angular dependence of double
photoejection by two photons produced in these calcula-
tions is instructive. While the effects of electron correla-

tion are dramatically visible in the TDCS for some ejec-
tion geometries, a qualitative signature of the separate
acceleration of the two electrons by the field persists at
energies where only nonsequential absorption of the two
photons is possible. The TDCS for the range of energies
from 42 eV to 54.4 eV can be understood qualitatively
as a modification by the effects of electron correlation
and final state interaction of the simple cos2(θ1) cos2(θ2)
pattern which would be present for sequential ionization.
A consideration of the details of the nuclear recoil cross
sections, not integrated over energy sharing, reveals that
this quantity reflects primarily the energetics of the dou-
ble ejection process and shows only subtle suggestions of
the details of the TDCS that carry information about
electron correlation.

These observations forcefully underscore the need for
detailed, kinematically complete experiments to unravel
the details of the correlated dynamics of multiple pho-
toionization, for either continuous wave radiation or in
emerging ultrafast time resolved studies.

Acknowledgments

This work was performed under the auspices of the US
Department of Energy by the University of California
Lawrence Berkeley National Laboratory under Contract



12

DE-AC02-05CH11231 and the Los Alamos National Lab-
oratory under Contract DE-AC52-06NA25396 and was
was supported by the U.S. DOE Office of Basic En-
ergy Sciences, Division of Chemical Sciences. CWM ac-
knowledges support from the National Science Founda-
tion (Grant No. PHY-0604628). Computations were car-
ried out using the Institutional Computing resources at
LANL.

Appendix A: Approximate treatment of two-photon

double ionization in the vicinity of the sequential

threshold

We begin with the definition of the cross section for
two-photon double ionization in the velocity form given
in Eqs.(1) and (2). To find the contribution for sequen-
tial ionization we focus only on the contribution to the
Green’s function of the single ionized intermediate states
in which the He+ is left in its ground state, neglecting
the contribution of intermediate bound and doubly ion-
ized states to the resolvent. We thus approximate the
matrix element of the resolvent that appears in Eq.(2)
by

〈Ψ−

k1,k2
|µ[E0 + ~ω −H + iǫ]−1µ|Φ0〉 ≈
∫

d3k0

〈Ψ−

k1k2
|µ|ψ−

k0,1s〉〈ψ−

k0,1s|µ|Φ0〉
E0 + ~ω − ǫ1s − k2

0/2 + iη

(A1)

where ǫ1s is the ground state energy He+, and as before
µ = ǫ·p1+ǫ·p2 is the velocity form of the dipole operator.

The matrix element 〈ψ−

k0,1s|µ|Φ0〉 can immediately be
recognized as the amplitude for one-photon single ioniza-
tion of He, but to proceed we need an approximation to
the other integral in the numerator of this expression

〈Ψ−

k1k2
|µ|ψ−

k0,1s〉 = 〈Ψ−

k1k2
|ǫ · p1 + ǫ · p2|ψ−

k0,1s〉 (A2)

To approximate this matrix element we make the follow-
ing two simplifying assumptions:

1. Ignore final state interaction completely so we can
write the final state as a symmetrized product of
Coulomb functions with charge Z = 2,

Ψ−

k1k2
(r1, r2) ≈ P{ϕZ=2(−)

k1
(r1) ϕ

Z=2(−)
k2

(r2)} (A3)

where P = 1/
√

2(1 + P12) is the symmetrizer (the
intermediate states are all singlets) so that this
wave function has delta function normalization in
momentum (δ(k1 − k′

1)δ(k2 − k′

2) ).

2. Ignore any correlation in ψ−

k0,1s, and ignore screen-
ing of the outgoing electron by the 1s electron in
He+,

ψ−

k0,1s ≈ ϕ
Z=2(−)
k0

(r1)ϕ
He+

1s (r2) (A4)

With these approximations, the integral over d3k0 in
Eq.(A1) will be controlled by the delta function from

the free-free overlap 〈ϕZ=2(−)
k1

|ϕZ=2(−)
k0

〉 = δ(k1 − k0)
as pointed out in another context by Proulx, Pont and
Shakeshaft [10]. So for the numerator matrix element in
Eq.(A2) we have

〈Ψ−

k1k2
|µ|ψ−

k0,1s〉 =
1√
2

(

δ(k1 − k0)〈ϕZ=2(−)
k2

|ǫ · p|ϕHe+

1s 〉

+δ(k2 − k0)〈ϕZ=2(−)
k1

|ǫ · p|ϕHe+

1s 〉
)

.

(A5)

With these approximations, Eqs.(A1), (1) and (2) give
the sequential contribution to the TDCS as

dσseq

dE1dΩ1dΩ2
≈ 2π

~
(2πα)2

1

m2ω2
k1k2

× 1

2

∣

∣

∣

∣

∣

〈ϕZ=2(−)
k2

|ǫ · p|ϕHe+

1s 〉〈ψ−

k1,1s|µ|Φ0〉
E0 + ~ω − ǫ1s − k2

1/2

+
〈ϕZ=2(−)

k1
|ǫ · p|ϕHe+

1s 〉〈ψ−

k2,1s|µ|Φ0〉
E0 + ~ω − ǫ1s − k2

2/2

∣

∣

∣

∣

∣

2

.

(A6)

The quantities in numerators of Eq.(A6) can be simply
related to the cross sections for single photoionization
of He and He+. For example, the cross section for the
one-photon ionization of He is given in this gauge by

dσ

dΩ
=

(2π)2kα

~ωm
|〈ψ−

k,1s|µ|Φ0〉|2 (A7)

and the cross section for ionization of He+ is given by the

same formula with the amplitude 〈ϕZ=2(−)
k1

|ǫ · p|ϕHe+

1s 〉.
If we ignore the phases of these amplitudes, we can ap-
proximate the matrix elements in Eq.(A6) as

〈ψ−

k,1s|µ|Φ0〉 =

(

~ωm

(2π)2kα

dσ

dΩ

)1/2

=

(

~ωm

(2π)2kα

σHe(E)

4π
(1 + βHe(E)P2(cos(θ)))

)1/2

(A8)

and with an analogous formula for the other ampli-

tude, 〈ϕZ=2(−)
k

|ǫ · p|ϕHe+

1s 〉. In the present case, both
of these are simple s to p transitions, so β = 2 and
(1 + βP2(cos(θ)) = 3 cos2(θ).

Substituting Eq.(A8) and its analogue for 〈ϕZ=2(−)
k

|ǫ ·
p|ϕHe+

1s 〉 into Eq(A6) gives the simple result for the
TDCS in Eq.(11). This approximate result can be further
generalized to the sequential ionization of initial states of
other symmetries, but in those cases the energy depen-
dence of the β parameters must also be considered.
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Appendix B: Calculation of nuclear recoil cross

section

Here we give a simple algorithm for computing the nu-
clear recoil cross section of Eq.(14). For an atom, no
matter the direction of the polarization vector, ǫ, we can
choose the z axis to lie along Q for the purpose of the in-
tegrations over Ω1 and Ω2 in Eq.(14). In that coordinate
system we can solve the geometry problem for finding
the set of k1 and k2 vectors that will sum to Q. Those
vectors make the angles θ1 and θ2 respectively with Q

cos(θ1) =
Q2 + k2

1 − k2
2

2Qk1
(B1)

cos(θ2) =
Q2 + k2

2 − k2
1

2Qk2
(B2)

φ1 = φ2 + π (B3)

where φ1 and φ2 are the the other spherical polar angles
angles of k1 and k2 around Q. Note also that

k1 sin(θ1) = k2 sin(θ2) . (B4)

The task of computing the nuclear recoil cross section
requires performing the four integrals in Eq.(14) over the
angles specifying the directions of k1 and k2 (namely θ1,
θ2, φ1, and φ2) while making use of the delta function
to perform three of them. Using Q as the z axis of our
coordinate system for the definition of θ1, θ2, φ1, and φ2

allows us to rewrite the delta function δ(Q + k1 + k2) =
δ(Qx + k1x + k2x)δ(Qy + k1y + k2y)δ(Qz + k1z + k2z) in
terms of these angles and convert the integral in Eq.(14)
to the form

dσ

d3QdE1
=

∫ ∫ ∫ ∫

dσ

dΩ1dΩ2dE1

δ(θ1 − θ1Q)δ(θ2 − θ2Q)δ(φ1 − φ2 − π)
∣

∣

∣

∂(Qx,Qy,Qz

∂(θ1,θ2,φ1
)
∣

∣

∣

sin θ1dθ1dφ1 sin θ2dθ2dφ2 .

(B5)

In Eq.(B5)
∣

∣

∣

∂(Qx,Qy,Qz

∂(θ1,θ2,φ1
)
∣

∣

∣
is the 3 × 3 Jacobian of the

transformation between Qx, Qy, Qz and θ1, θ2, φ1,

−Qx = k1 sin θ1 cosφ1 + k2 sin θ2 cosφ2 (B6)

−Qy = k1 sin θ1 sinφ1 + k2 sin θ2 sinφ2 (B7)

−Qz = k1 cos θ1 + k2 cos θ2 . (B8)

We can simplify that determinant to

∣

∣

∣

∣

∂(Qx, Qy, Qz

∂(θ1, θ2, φ1)

∣

∣

∣

∣

= k2
1k2 sin θ1 sin(θ1 + θ2) . (B9)

Some additional algebra making use of Eqs.(B1), (B2),
(B3) and (B4) shows that

sin θ2
k2
1k2 sin(θ1 + θ2)

=
1

Qk1k2
(B10)

yielding the final result for the integral in Eq.(B5) with
Q as the z axis

dσ

d3QdE1
=

∫ 2π

0

dφ2

Qk1k2

(

dσ

dΩ1dΩ2dE1

)

(B11)

with the angles θ1, θ2 and φ1 at which the TDCS is eval-
uated in the integrand being determined by Eqs.(B1),
(B2) and (B3).

Eq.(B11) produces the nuclear recoil cross section, but
to comparison with experiment we must take the further
step of expressing the result in terms of the components
of Q in a coordinate system in which the polarization
vector ǫ lies along the z axis. Since we compute the
TDCS, dσ/dΩ1dΩ2dE1, with the angles expressed in that
coordinate system (as in Eq.(11) for example), this is an
easy task.

So to accumulate the integral in Eq.(B11) numerically
we follow the following algorithm:

1. Pick a φ2 quadrature point in Eq.(B11) .

2. Calculate θ1 , θ2 and φ1 via Eqs.(B1), (B2) and
(B3).

3. Transform those angles to angles with respect to a
coordinate system with ǫ as the z axis.

4. Evaluate TDCS in that coordinate system.

5. Accumulate sum for the numerical quadrature over
φ2.

6. Go to 1.
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